Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38596361

RESUMO

Enzymes combat bacterial infections by degrading biomolecules to disperse Staphylococcus aureus biofilms. Commercial enzyme mixtures, like cellulase and pepsin, show concentration-dependent dispersion, but low concentrations lack synergy. Only the sequential addition of pepsin followed by Arthrobacter luteus zymolyase 20T displays synergy, effectively dispersing biofilms. Purified zymolyase 100T outperforms zymolyase 20T but lacks synergy with pepsin. This study underscores the complexity of enzymatic biofilm dispersal, highlighting the need for tailored approaches based on enzyme properties and biofilm composition.

2.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370613

RESUMO

Plasmids play a major role in bacterial evolution and rapid adaptation by facilitating the horizontal transfer of diverse genes. Understanding how plasmids are transferred and maintained in bacterial populations is important, especially given the increasing plasmid-mediated spread of antibiotic-resistance genes to human pathogens. We investigated why broad-host range plasmid pBP136, originally isolated from clinical samples of Bordetella pertussis, quickly became extinct in laboratory Escherichia coli populations. We found that the inactivation of a previously uncharacterized plasmid gene, upf31, drastically improved long-term maintenance of the plasmid in E. coli. Loss of this single gene was associated with decreased transcription of numerous genes in the plasmid korA, korB and korC regulons, as well as changes in many chromosomal genes primarily related to metabolism. This change in transcriptome is likely initiated by Upf31 interacting with one of these major plasmid regulators, KorB. Expression of upf31 in trans not only negatively affected the persistence of a pBP136 upf31 deletion mutant, but also of the closely related archetype IncPß plasmid R751, which is stable in E. coli and natively encodes an internally truncated upf31 allele. This suggests that whereas the upf31 allele in pBP136 might advantageously modulate gene expression in its original host, B. pertussis, the same function can have harmful effects in E. coli. Thus, using multiple hosts to study the effects of knockouts in broad-host-range plasmid genes of unknown function may reveal unexpected mechanisms that determine the fate of that plasmid in bacterial communities.

3.
Ecol Evol ; 14(1): e10811, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192907

RESUMO

The resources for carrying out and analyzing microbial evolution experiments have become more accessible, making it possible to expand these studies beyond the research laboratory and into the classroom. We developed five connected, standards-aligned yeast evolution laboratory modules, called "yEvo," for high school students. The modules enable students to take agency in answering open-ended research questions. In Module 1, students evolve baker's yeast to tolerate an antifungal drug, and in subsequent modules, investigate how evolved yeasts adapted to this stressful condition at both the phenotype and genotype levels. We used pre- and post-surveys from 72 students at two different schools and post-interviews with students and teachers to assess our program goals and guide module improvement over 3 years. We measured changes in student conceptions, confidence in scientific practices, and interest in STEM careers. Students who participated in yEvo showed improvements in understanding of activity-specific concepts and reported increased confidence in designing a valid biology experiment. Student experimental data replicated literature findings and has led to new insights into antifungal resistance. The modules and provided materials, alongside "proof of concept" evaluation metrics, will serve as a model for other university researchers and K - 16 classrooms interested in engaging in open-ended research questions using yeast as a model system.

4.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37935474

RESUMO

Killer toxins are antifungal proteins produced by many species of "killer" yeasts, including the brewer's and baker's yeast Saccharomyces cerevisiae. Screening 1270 strains of S. cerevisiae for killer toxin production found that 50% are killer yeasts, with a higher prevalence of yeasts isolated from human clinical samples and winemaking processes. Since many killer toxins are encoded by satellite double-stranded RNAs (dsRNAs) associated with mycoviruses, S. cerevisiae strains were also assayed for the presence of dsRNAs. This screen identified that 51% of strains contained dsRNAs from the mycovirus families Totiviridae and Partitiviridae, as well as satellite dsRNAs. Killer toxin production was correlated with the presence of satellite dsRNAs but not mycoviruses. However, in most killer yeasts, whole genome analysis identified the killer toxin gene KHS1 as significantly associated with killer toxin production. Most killer yeasts had unique spectrums of antifungal activities compared to canonical killer toxins, and sequence analysis identified mutations that altered their antifungal activities. The prevalence of mycoviruses and killer toxins in S. cerevisiae is important because of their known impact on yeast fitness, with implications for academic research and industrial application of this yeast species.


Assuntos
RNA de Cadeia Dupla , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Antifúngicos/metabolismo , Prevalência , Leveduras/genética , Fatores Matadores de Levedura/genética , Fatores Matadores de Levedura/metabolismo
5.
bioRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873330

RESUMO

The use of enzymes represents an approach to combat bacterial infections by degrading extracellular biomolecules to disperse Staphylococcus aureus biofilms. Commercial enzyme preparations, including cellulase, amylase, pectinase, zymolyase, and pepsin, exhibit concentration-dependent dispersion of S. aureus biofilms. Here, we report that low concentrations of these enzymes generally lack synergy when combined or added together sequentially to biofilms. Only the addition of a protease (pepsin) followed by a commercial mixture of degradative enzymes from Arthrobacter luteus (zymolyase 20T), demonstrated synergy and was effective at dispersing S. aureus biofilms. A more purified mixture of Arthrobacter luteus enzymes (zymolyase 100T) showed improved dispersal of S. aureus biofilms compared to zymolyase 20T but lacked synergy with pepsin. This study emphasizes the complexity of enzymatic biofilm dispersal and the need for tailored approaches based on the properties of degradative enzymes and biofilm composition.

6.
PLoS Pathog ; 19(6): e1011418, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285383

RESUMO

It has been 49 years since the last discovery of a new virus family in the model yeast Saccharomyces cerevisiae. A large-scale screen to determine the diversity of double-stranded RNA (dsRNA) viruses in S. cerevisiae has identified multiple novel viruses from the family Partitiviridae that have been previously shown to infect plants, fungi, protozoans, and insects. Most S. cerevisiae partitiviruses (ScPVs) are associated with strains of yeasts isolated from coffee and cacao beans. The presence of partitiviruses was confirmed by sequencing the viral dsRNAs and purifying and visualizing isometric, non-enveloped viral particles. ScPVs have a typical bipartite genome encoding an RNA-dependent RNA polymerase (RdRP) and a coat protein (CP). Phylogenetic analysis of ScPVs identified three species of ScPV, which are most closely related to viruses of the genus Cryspovirus from the mammalian pathogenic protozoan Cryptosporidium parvum. Molecular modeling of the ScPV RdRP revealed a conserved tertiary structure and catalytic site organization when compared to the RdRPs of the Picornaviridae. The ScPV CP is the smallest so far identified in the Partitiviridae and has structural homology with the CP of other partitiviruses but likely lacks a protrusion domain that is a conspicuous feature of other partitivirus particles. ScPVs were stably maintained during laboratory growth and were successfully transferred to haploid progeny after sporulation, which provides future opportunities to study partitivirus-host interactions using the powerful genetic tools available for the model organism S. cerevisiae.


Assuntos
Criptosporidiose , Cryptosporidium , Micovírus , Vírus de RNA , Animais , Saccharomyces cerevisiae/genética , RNA Viral/genética , Filogenia , Criptosporidiose/genética , Vírus de RNA de Cadeia Dupla , RNA Polimerase Dependente de RNA/genética , Genoma Viral , RNA de Cadeia Dupla , Mamíferos
7.
Microorganisms ; 11(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36838258

RESUMO

Commercially available cellulases and amylases can disperse the pathogenic bacteria embedded in biofilms. This suggests that polysaccharide-degrading enzymes would be useful as antibacterial therapies to aid the treatment of biofilm-associated bacteria, e.g., in chronic wounds. Using a published enzyme library, we explored the capacity of 76 diverse recombinant glycoside hydrolases to disperse Staphylococcus aureus biofilms. Four of the 76 recombinant glycoside hydrolases digested purified cellulose, amylose, or pectin. However, these enzymes did not disperse biofilms, indicating that anti-biofilm activity is not general to all glycoside hydrolases and that biofilm activity cannot be predicted from the activity on pure substrates. Only one of the 76 recombinant enzymes was detectably active in biofilm dispersion, an α-xylosidase from Aspergillus nidulans. An α-xylosidase cloned subsequently from Aspergillus thermomutatus likewise demonstrated antibiofilm activity, suggesting that α-xylosidases, in general, can disperse Staphylococcus biofilms. Surprisingly, neither of the two ß-xylosidases in the library degraded biofilms. Commercial preparations of amylase and cellulase that are known to be effective in the dispersion of Staphylococcus biofilms were also analyzed. The commercial cellulase contained contaminating proteins with multiple enzymes exhibiting biofilm-dispersing activity. Successfully prospecting for additional antibiofilm enzymes may thus require large libraries and may benefit from purified enzymes. The complexity of biofilms and the diversity of glycoside hydrolases continue to make it difficult to predict or understand the enzymes that could have future therapeutic applications.

8.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36173330

RESUMO

Antifungal resistance in pathogenic fungi is a growing global health concern. Nonpathogenic laboratory strains of Saccharomyces cerevisiae are an important model for studying mechanisms of antifungal resistance that are relevant to understanding the same processes in pathogenic fungi. We have developed a series of laboratory modules in which high school students used experimental evolution to study antifungal resistance by isolating azole-resistant S. cerevisiae mutants and examining the genetic basis of resistance. We have sequenced 99 clones from these experiments and found that all possessed mutations previously shown to impact azole resistance, validating our approach. We additionally found recurrent mutations in an mRNA degradation pathway and an uncharacterized mitochondrial protein (Csf1) that have possible mechanistic connections to azole resistance. The scale of replication in this initiative allowed us to identify candidate epistatic interactions, as evidenced by pairs of mutations that occur in the same clone more frequently than expected by chance (positive epistasis) or less frequently (negative epistasis). We validated one of these pairs, a negative epistatic interaction between gain-of-function mutations in the multidrug resistance transcription factors Pdr1 and Pdr3. This high school-university collaboration can serve as a model for involving members of the broader public in the scientific process to make meaningful discoveries in biomedical research.


Assuntos
Clotrimazol , Farmacorresistência Fúngica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Antifúngicos/farmacologia , Clotrimazol/farmacologia , Proteínas de Ligação a DNA/genética , Farmacorresistência Fúngica/genética , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
9.
Viruses ; 14(3)2022 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-35337001

RESUMO

Mycoviruses are widely distributed across fungi, including the yeasts of the Saccharomycotina subphylum. This manuscript reports the first double-stranded RNA (dsRNA) virus isolated from Pichia membranifaciens. This novel virus has been named Pichia membranifaciens virus L-A (PmV-L-A) and is a member of the Totiviridae. PmV-L-A is 4579 bp in length, with RNA secondary structures similar to the packaging, replication, and frameshift signals of totiviruses that infect Saccharomycotina yeasts. PmV-L-A was found to be part of a monophyletic group within the I-A totiviruses, implying a shared ancestry between mycoviruses isolated from the Pichiaceae and Saccharomycetaceae yeasts. Energy-minimized AlphaFold2 molecular models of the PmV-L-A Gag protein revealed structural conservation with the Gag protein of Saccharomyces cerevisiae virus L-A (ScV-L-A). The predicted tertiary structure of the PmV-L-A Pol and other homologs provided a possible mechanism for totivirus RNA replication due to structural similarities with the RNA-dependent RNA polymerases of mammalian dsRNA viruses. Insights into the structure, function, and evolution of totiviruses gained from yeasts are essential because of their emerging role in animal disease and their parallels with mammalian viruses.


Assuntos
Micovírus , Totivirus , Vírus não Classificados , Vírus de DNA/genética , Micovírus/genética , Produtos do Gene gag/metabolismo , Pichia/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Saccharomyces cerevisiae/genética , Totivirus/genética , Totivirus/metabolismo , Vírus não Classificados/genética
10.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849803

RESUMO

The gene encoding the ubiquitous DNA repair protein, Ku70p, has undergone extensive copy number expansion during primate evolution. Gene duplications of KU70 have the hallmark of long interspersed element-1 mediated retrotransposition with evidence of target-site duplications, the poly-A tails, and the absence of introns. Evolutionary analysis of this expanded family of KU70-derived "NUKU" retrocopies reveals that these genes are both ancient and also actively being created in extant primate species. NUKU retrocopies show evidence of functional divergence away from KU70, as evinced by their altered pattern of tissue expression and possible tissue-specific translation. Molecular modeling predicted that amino acid changes in Nuku2p at the interaction interface with Ku80p would prevent the assembly of the Ku heterodimer. The lack of Nuku2p-Ku80p interaction was confirmed by yeast two-hybrid assay, which contrasts the robust interaction of Ku70p-Ku80p. While several NUKU retrocopies appear to have been degraded by mutation, NUKU2 shows evidence of positive natural selection, suggesting that this retrocopy is undergoing neofunctionalization. Although Nuku proteins do not appear to antagonize retrovirus transduction in cell culture, the observed expansion and rapid evolution of NUKUs could be being driven by alternative selective pressures related to infectious disease or an undefined role in primate physiology.


Assuntos
Evolução Molecular , Primatas , Animais , Duplicação Gênica , Primatas/genética , RNA Mensageiro
11.
Antimicrob Agents Chemother ; 65(7): e0245020, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972245

RESUMO

Compared to other species of Candida yeasts, the growth of Candida glabrata is inhibited by many different strains of Saccharomyces killer yeasts. The ionophoric K1 and K2 killer toxins are broadly inhibitory to all clinical isolates of C. glabrata from patients with recurrent vulvovaginal candidiasis, despite high levels of resistance to clinically relevant antifungal therapeutics.


Assuntos
Candida glabrata , Candidíase Vulvovaginal , Antifúngicos/farmacologia , Candida glabrata/genética , Candidíase Vulvovaginal/tratamento farmacológico , Farmacorresistência Fúngica/genética , Feminino , Humanos , Ionóforos , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/genética
12.
PLoS Genet ; 17(2): e1009341, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539346

RESUMO

Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.


Assuntos
Ascomicetos/genética , Variação Genética , Fatores Matadores de Levedura/genética , Saccharomycetales/genética , Ascomicetos/classificação , Ascomicetos/virologia , Evolução Molecular , Fluxo Gênico , Transferência Genética Horizontal , Filogenia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Saccharomyces/classificação , Saccharomyces/genética , Saccharomyces/virologia , Saccharomyces cerevisiae/genética , Saccharomycetales/classificação , Saccharomycetales/virologia , Especificidade da Espécie , Totivirus/genética
13.
Semin Ultrasound CT MR ; 41(6): 572-583, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33308496

RESUMO

Although diagnosing the syndrome of dementia is largely a clinical endeavor, neuroimaging plays an increasingly important role in accurately determining the underlying etiology, which extends beyond its traditional role in excluding other causes of altered cognition. New neuroimaging methods not only facilitate the diagnosis of the most common neurodegenerative conditions (particularly Alzheimer Disease [AD]) after symptom onset, but also show diagnostic promise even in the very early or presymptomatic phases of disease. Positron emission tomography (PET) is increasingly recognized as a key clinical tool for differentiating normal age-related changes in brain metabolism (using 18F-fluorodeoxyglucose [FDG]) from those seen in the earliest stages of specific forms of dementia. However, FDG PET only demonstrates nonspecific changes in altered parenchymal glucose uptake and not the specific etiologic proteinopathy causing the abnormal glucose uptake. A growing class of radiotracers targeting specific protein aggregates for amyloid-ß (Aß) and tau are changing the way AD is diagnosed, as these radiotracers directly label the underlying disease pathology. As these pathology-specific radiotracers are currently making their way to the clinic, it is important for the clinical neuroradiologist to understand the underlying patterns of Aß and tau deposition in the context of AD (across its clinical continuum) and in other causes of dementia, as well as understand the implications of current research.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos
14.
PLoS One ; 15(7): e0230767, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730254

RESUMO

The injection of laboratory animals with pathogenic microorganisms poses a significant safety risk because of the potential for injury by accidental needlestick. This is especially true for researchers using invertebrate models of disease due to the required precision and accuracy of the injection. The restraint of the greater wax moth larvae (Galleria mellonella) is often achieved by grasping a larva firmly between finger and thumb. Needle resistant gloves or forceps can be used to reduce the risk of a needlestick but can result in animal injury, a loss of throughput, and inconsistencies in experimental data. Restraint devices are commonly used for the manipulation of small mammals, and in this manuscript, we describe the construction of two devices that can be used to entrap and restrain G. mellonella larvae prior to injection with pathogenic microbes. These devices reduce the manual handling of larvae and provide an engineering control to protect against accidental needlestick injury while maintaining a high rate of injection.


Assuntos
Injeções/instrumentação , Microbiologia/instrumentação , Mariposas/microbiologia , Prevenção de Acidentes , Animais , Descontaminação/instrumentação , Reutilização de Equipamento , Larva/microbiologia
15.
Nucleic Acids Res ; 48(12): 6413-6430, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479633

RESUMO

Streptomyces phage ϕC31 integrase (Int)-a large serine site-specific recombinase-is autonomous for phage integration (attP x attB recombination) but is dependent on the phage coded gp3, a recombination directionality factor (RDF), for prophage excision (attL x attR recombination). A previously described activating mutation, E449K, induces Int to perform attL x attR recombination in the absence of gp3, albeit with lower efficiency. E449K has no adverse effect on the competence of Int for attP x attB recombination. Int(E449K) resembles Int in gp3 mediated stimulation of attL x attR recombination and inhibition of attP x attB recombination. Using single-molecule analyses, we examined the mechanism by which E449K activates Int for gp3-independent attL x attR recombination. The contribution of E449K is both thermodynamic and kinetic. First, the mutation modulates the relative abundance of Int bound attL-attR site complexes, favoring pre-synaptic (PS) complexes over non-productively bound complexes. Roughly half of the synaptic complexes formed from Int(E449K) pre-synaptic complexes are recombination competent. By contrast, Int yields only inactive synapses. Second, E449K accelerates the dissociation of non-productively bound complexes and inactive synaptic complexes formed by Int. The extra opportunities afforded to Int(E499K) in reattempting synapse formation enhances the probability of success at fruitful synapsis.


Assuntos
Mutação com Ganho de Função , Integrases/metabolismo , Siphoviridae/enzimologia , Proteínas Virais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Integrases/química , Integrases/genética , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Recombinação Genética , Siphoviridae/genética , Proteínas Virais/química , Proteínas Virais/genética
16.
Magn Reson Imaging ; 70: 36-42, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32298718

RESUMO

Neuroimaging studies of psychiatric illness have revealed a broad spectrum of structural and functional perturbations that have been attributed in part to the complex genetic heterogeneity underpinning these disorders. These perturbations have been identified in both preclinical genetic models and in patients when compared to control populations, but recent work has also demonstrated strong evidence for genetic, molecular, and structural convergence of several psychiatric diseases. We explored potential similarities in neural microstructure in preclinical genetic models of ASD (Fmr1, Nrxn1, Pten) and schizophrenia (Disc1 svΔ2) and in age- and sex-matched control animals with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Our findings demonstrate a convergence in brain microstructure across these four genetic models with both tract-based and region-of-interest based analyses, which continues to buttress an emerging understanding of converging neural microstructure in psychiatric disease.


Assuntos
Transtorno do Espectro Autista/patologia , Encéfalo/patologia , Esquizofrenia/patologia , Adulto , Animais , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Humanos , Masculino , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
17.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31776272

RESUMO

The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr enhances viral replication in both macrophages and, to a lesser extent, cycling T cells. Virion-packaged Vpr is released in target cells shortly after entry, suggesting it is required in the early phase of infection. Previously, we described REAF (RNA-associated early-stage antiviral factor; RPRD2), a constitutively expressed protein that potently restricts HIV replication at or during reverse transcription. Here, we show that a virus without an intact vpr gene is more highly restricted by REAF and, using delivery by virus-like particles (VLPs), that Vpr alone is sufficient for REAF degradation in primary macrophages. REAF is more highly expressed in macrophages than in cycling T cells, and we detected, by coimmunoprecipitation assay, an interaction between Vpr protein and endogenous REAF. Vpr acts quickly during the early phase of replication and induces the degradation of REAF within 30 min of viral entry. Using Vpr F34I and Q65R viral mutants, we show that nuclear localization and interaction with cullin 4A-DBB1 (DCAF1) E3 ubiquitin ligase are required for REAF degradation by Vpr. In response to infection, cells upregulate REAF levels. This response is curtailed in the presence of Vpr. These findings support the hypothesis that Vpr induces the degradation of a factor, REAF, that impedes HIV infection in macrophages.IMPORTANCE For at least 30 years, it has been known that HIV-1 Vpr, a protein carried in the virion, is important for efficient infection of primary macrophages. Vpr is also a determinant of the pathogenic effects of HIV-1 in vivo A number of cellular proteins that interact with Vpr have been identified. So far, it has not been possible to associate these proteins with altered viral replication in macrophages or to explain why Vpr is carried in the virus particle. Here, we show that Vpr mitigates the antiviral effects of REAF, a protein highly expressed in primary macrophages and one that inhibits virus replication during reverse transcription. REAF is degraded by Vpr within 30 min of virus entry in a manner dependent on the nuclear localization of Vpr and its interaction with the cell's protein degradation machinery.


Assuntos
Antivirais/metabolismo , HIV-1/metabolismo , Replicação Viral/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Produtos do Gene vpr/metabolismo , Produtos do Gene vpr/fisiologia , Células HEK293 , Infecções por HIV/virologia , HIV-1/fisiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/metabolismo , Cultura Primária de Células , Ubiquitina-Proteína Ligases/metabolismo , Vírion/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
18.
Magn Reson Imaging ; 61: 90-96, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31103832

RESUMO

Recent studies have investigated the effectiveness of aerobic exercise to improve physical and mental health outcomes in schizophrenia; however, few have explicitly explored the impact of aerobic exercise on neural microstructure, which is hypothesized to mediate the behavioral changes observed. Neural microstructure is influenced by numerous genetic factors including DISC1, which is a major molecular scaffold protein that interacts with partners like GSK3ß, NDEL1, and PDE4. DISC1 has been shown to play a role in neurogenesis, neuronal migration, neuronal maturation, and synaptic signaling. As with other genetic variants that present an increased risk for disease, mutations of the DISC1 gene have been implicated in the molecular intersection of schizophrenia and numerous other major psychiatric illnesses. This study investigated whether short-term exercise recovers deficits in neural microstructure in a novel genetic Disc1 svΔ2 rat model. Disc1 svΔ2 animals and age- and sex-matched controls were subjected to a treadmill exercise protocol. Subsequent ex-vivo diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) compared neural microstructure in regions of interest (ROI) between sedentary and exercise wild-type animals and between sedentary and exercise Disc1 svΔ2 animals. Short-term exercise uncovered no significant differences in neural microstructure between sedentary and exercise control animals but did lead to significant differences between sedentary and exercise Disc1 svΔ2 animals in neocortex, basal ganglia, corpus callosum, and external capsule, suggesting a positive benefit derived from a short-term exercise regimen. Our findings suggest that Disc1 svΔ2 animals are more sensitive to the effects of short-term exercise and highlight the ameliorating potential of positive treatment interventions such as exercise on neural microstructure in genetic backgrounds of psychiatric disease susceptibility.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Proteínas do Tecido Nervoso , Neurônios/ultraestrutura , Condicionamento Físico Animal/métodos , Esquizofrenia/patologia , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Humanos , Masculino , Mutação , Ratos , Ratos Sprague-Dawley
19.
Front Neurosci ; 13: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837826

RESUMO

Neuroinflammation plays a central role in the neuropathogenesis of a wide-spectrum of neurologic and psychiatric disease, but current neuroimaging methods to detect and characterize neuroinflammation are limited. We explored the sensitivity of quantitative multi-compartment diffusion MRI, and specifically neurite orientation dispersion and density imaging (NODDI), to detect changes in microglial density in the brain. Monte Carlo simulations of water diffusion using a NODDI acquisition scheme were performed to measure changes in a virtual MRI signal following modeled cellular changes within the extra-neurite space. 12-week-old C57BL/6J male mice (n = 48; 24 control, 24 treated with colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622) were sacrificed at 0, 1, 3, and 7 days following withdrawal of CSF1R inhibition and were imaged ex-vivo to obtain measures of the orientation dispersion index (ODI). Following imaging, all brains were immunostained with Iba-1, NeuN, and GFAP for quantitative fluorescence microscopy. Cell populations were calculated with the ImageJ particle analyzer tool; correlation between microglial density and mean ODI values were calculated with Kendall's tau. Monte Carlo simulations demonstrate the sensitivity and positive correlation of ODI to increased occupancy in the extra-neurite space. Commensurate with our simulation data, ex-vivo NODDI imaging demonstrates an increase in ODI as microglia repopulate the brain following the withdrawal of CSF1R inhibition. Quantitative immunofluorescence of microglial density reveals that microglial density is positively correlated with ODI and greater hindered diffusion in the extra-neurite space (τ = 0.386, p < 0.05). Our results demonstrate that clinically feasible multi-compartment diffusion weighted imaging techniques such as NODDI are sensitive to microglial density and the cellular changes associated with microglial activation and highlights its potential to improve clinical diagnostic accuracy, patient risk stratification, and therapeutic monitoring of neuroinflammation in neurologic and psychiatric disease.

20.
Transl Psychiatry ; 9(1): 82, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30745562

RESUMO

Diffusion tensor imaging (DTI) has provided remarkable insight into our understanding of white matter microstructure and brain connectivity across a broad spectrum of psychiatric disease. While DTI and other diffusion weighted magnetic resonance imaging (MRI) methods have clarified the axonal contribution to the disconnectivity seen in numerous psychiatric diseases, absent from these studies are quantitative indices of neurite density and orientation that are especially important features in regions of high synaptic density that would capture the synaptic contribution to the psychiatric disease state. Here we report the application of neurite orientation dispersion and density imaging (NODDI), an emerging microstructure imaging technique, to a novel Disc1 svΔ2 rat model of psychiatric illness and demonstrate the complementary and more specific indices of tissue microstructure found in NODDI than those reported by DTI. Our results demonstrate global and sex-specific changes in white matter microstructural integrity and deficits in neurite density as a consequence of the Disc1 svΔ2 genetic variation and highlight the application of NODDI and quantitative measures of neurite density and neurite dispersion in psychiatric disease.


Assuntos
Transtornos Mentais/patologia , Proteínas do Tecido Nervoso/genética , Neuritos/patologia , Fatores Sexuais , Substância Branca/diagnóstico por imagem , Animais , Anisotropia , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Éxons , Feminino , Masculino , Vias Neurais/patologia , Neuritos/ultraestrutura , Condicionamento Físico Animal , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto , Substância Branca/patologia , Substância Branca/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...